
October 2000 The Delphi Magazine 51

Webifying Outlook
by Jani Järvinen

If you rely on Microsoft Outlook
as your personal information

manager, you might run into a situ-
ation where you’d like to access
your information but can’t. In these
cases a simple web interface that
allows you to peek into your data
would be more than bliss. Read on
to learn how to create your
personal web interface to Outlook.

This July I had the privilege to
attend the 11th Annual Borland
Developer Conference in San
Diego. The conference was great in
itself, but when I went to write
postcards to my friends back
home, I noticed that I had forgotten
the addresses. I knew they were
stored in my Outlook, but there
was no way of getting the informa-
tion, even though I had left my
computer on and connected to the
internet.

Fortunately, I could call a friend
of mine who had most of the
addresses I needed, so everything
was well. Nonetheless, this inci-
dent gave me the idea to write a
web interface to Outlook. With
such an interface I could use any
web browser to read information
in my Outlook, including those
precious contact cards, from any-
where in the world.

Of course, such a system would
be beneficial in the business world,
too. For example, how many times
have you said to your colleague or
customer ‘I’ll have to get back to
you’ before making an appoint-
ment? Well, now that web access is
so common, there really is no
excuse for saying that any more.

If you know what I’m talking
about, you will definitely appreci-
ate the example application pre-
sented in this article. So, let’s
begin.

The Architecture
Briefly put, the architecture of the
example application, Weblook, is a
three-tier architecture. As a web-
based application, the first tier is
devoted to the web server app,

which is an ISAPI (Internet Server
API) extension DLL to be precise.
The second tier is actually the tier
of a helper application that han-
dles all the communications with
Outlook. The final tier is, without
doubt, Outlook itself.

This kind of architecture was
required because ISAPI applica-
tions do not generally run under
the context of the interactive user,
but instead under a system
account, depending on the web
server configuration. Trying to
access Outlook using COM inter-
faces is difficult under such situa-
tions, so I chose to create a simple
helper application with which the
ISAPI DLL could communicate
(curious readers might want to
read Microsoft KnowledgeBase
article Q156223 for further
illumination).

The helper application uses
Delphi 5’s Office components to
access Outlook, although I’ve writ-
ten a wrapper class around the
component to the keep the code

clean. I’ve tested the helper appli-
cation (creatively named
OutlookHelper) with Outlook
2000, but the application should be
compatible with Outlook 98 with
only minor modifications.

The ISAPI DLL uses Delphi’s
WebBroker technology. This tech-
nique allows the developer to
build advanced web applications
fast, and I’ve personally found it to
be very reliable. Of course, using
an ISAPI DLL requires that you
have an ISAPI compatible web
server at your disposal.

My favorite web server is
Microsoft Internet Information
Server (IIS) running on Windows
NT or Windows 2000. Although
you can run ISAPI applications in
Windows 95/98, I suggest sticking
with NT technology operating
systems because of their greater
stability.

Playing Pipes
As you might know, when a pro-
cess in the 32-bit Windows world
loads a DLL into memory, the DLL
gets loaded into the address space
of the process. In particular, this is

➤ Figure 1: The Weblook
example application running.

52 The Delphi Magazine Issue 62

exactly what happens when IIS (or
a similar web server) loads the
Weblook DLL into memory in
default configuration.

As OutlookHelper is an entirely
different application, the ISAPI
DLL and the helper application
need some way to communicate.
The Win32 API provides many dif-
ferent methods for inter-process
communication, or IPC. For the
example applications presented
here, I’ve chosen to use a method
called named pipes.

Describing the inner workings of
pipes is beyond the scope of this
article, but I will still provide you
with the information about how
bits are put into motion through
pipes. If you wish to learn more
about pipes, or IPC in general, I sug-
gest reading Brian Long’s article
Win32 Inter-Process Communication
in the October 1999 issue.

In the example applications,
pipes are used to communicate
information about items in Out-
look. For example, when the user
wants to see the contents of his/
her Inbox, the ISAPI DLL sends a
textual command to the helper
application (I call this a request),
for example INBOX COUNT.

The helper application will note
the request, process it, and finally
respond to the request. In the case
of the aforementioned request, the
reply would simply be the number
of mail messages in the Inbox, like
this: 4.

The ISAPI DLL
When the user wants to see, for
instance, his or her calendar,
he/she clicks on the Calendar link
on the Weblook main menu on the
leftmost frame of the Weblook
interface (see Figure 1). The ISAPI
DLL supports six basic commands,
namely for displaying the calendar,

contacts, tasks,
notes and Inbox.
Additionally, I’ve
written a ‘Weblook
Today’ command

that mimics the Outlook Today
command in Outlook, but is some-
what simpler.

Basically, the ISAPI DLL’s work
is to process a request from the
user, contact the helper applica-
tion for details about an item in
Outlook, get the results back and
finally process them as appropri-
ate. The DLL must then format an
HTML response that will eventu-
ally be sent to the user’s browser.

The different commands the
web DLL supports are divided into
a similar number of actions on the
web module, as shown in Figure 2.
The first action, Calendar, has a
PathInfo of /calendar. In effect, this
means that when the relative URL
/scripts/weblook.dll/calendar is
used, the ISAPI DLL knows to
execute the OnAction event handler
of the Calendar action.

Although the calendar is proba-
bly the most interesting action in
Weblook, it is also the most com-
plex one to implement. For exam-
ple, the Calendar actions must deal
with the additional overhead of for-
matting a monthly calendar in
HTML. For this reason I feel it is
better to start with less advanced
actions so that you learn how
those basic actions work.

An Action Roundtrip
When the execution of the ISAPI
DLL ends in an OnAction event han-
dler, most of the actions first send
a request to the helper application

asking for the number of items in
the given folder. For example, the
action for displaying the notes in
Outlook first sends a NOTE COUNT
request to the helper application.

When the DLL receives the
response from the helper applica-
tion, it starts to iterate through the
items in the folder in question. The
event handler for the Notes action
would, for instance, iterate
through all the notes one by one,
and construct appropriate HTML
code along the way.

Once all items have been iter-
ated, the partially constructed
HTML code will be merged with an
HTML template. I’ve chosen to
store those templates as string
constants in the HTMLTemplatesunit
of the Weblook application. In a
commercial application you might
want to store the templates in a
database.

After the merging has been com-
pleted, with a bit of help from the
StringReplace function, the final
HTML code will be sent to the
browser using the TWebResponse
class. The Response parameter of
the action’s OnAction event han-
dler will provide an instance of
this class.

Usually, the HTML template is
written such that all the items
found are stored in one large
HTML table (<TABLE>). This way
the code iterating through the
items needs only to construct
HTML table rows. That is, the code
must be aware of how the <TR> and
<TD> HTML tags work. Listing 1
shows you how a typical action
works.

Requests And Responses
As I noted earlier, when the ISAPI
DLL wants to send a request to the
helper application, it uses pipes.

➤ Figure 2:
The ISAPI DLL
web module at
design-time.

procedure TWeblookWM.WeblookWMNotesAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

Var
iIndex,iCount : Integer;
strRows : String;

begin
iCount := StrToInt(ReadPipeRequestResponse('NOTE COUNT'));
For iIndex := 0 to iCount-1 do Begin
strRows := strRows + ' <TR VALIGN="TOP">' + CRLF +

ReadPipeRequestResponse('NOTE ' + IntToStr(iIndex)) + ' </TR>' + CRLF;
End;
Response.Content := StringReplace(cstrNotesHTML,'%rows%',strRows,[]);

end;

➤ Listing 1

October 2000 The Delphi Magazine 53

The Win32 API makes it easy to
work with byte-oriented named
pipes, as they act almost like files.
For example, the API functions
ReadFile and WriteFile work
perfectly well with pipes as well as
files.

To send a request to the helper
application, the ISAPI DLL uses the
method named ReadPipeRequest-
Response, shown in Listing 2. Before
any text commands can send
through the pipe, it must be
opened using the CreateFile API
function. Because the CreateFile
function can sometimes fail when
trying to open the pipe, I’ve cre-
ated a helper method named
CreateNamedPipe to handle most
error situations.

Pipe names are prefixed with a
multitude of backslashes, so the
name of the pipe used by the exam-
ple applications is \\.\pipe\
weblook_tdm_version_1. It goes
without saying that both the ISAPI
DLL and the helper application
must use the exactly same pipe
name to be able to communicate.

The ReadPipeRequestResponse
method first uses a WriteFile API
call to write the request to the
helper application. Then, it calls
the ReadFile function to read the
response from the helper applica-
tion. The ReadFile is a blocking
function, meaning that it will not
return until there is something to
read. This is mandatory, as the

helper application needs some
time to process the request.

To give you a concrete example,
let’s assume that the user clicks on
the Notes icon to see the notes in
his/her Outlook. First, the NOTE
COUNT command would be needed
to get the count of notes. The
WriteFile function would transmit
the command to the helper appli-
cation. While the ISAPI DLL is
blocking in the ReadFile call, the
helper application is querying
Outlook to get the count.

Then, the helper application
returns the appropriate number
(as a text string), and sends it to
the other side of the pipe, to the
DLL. This causes the ReadFile func-
tion to return, and the ISAPI DLL
now has the number of notes. This
allows it to begin the note iteration
in similar fashion.

Constructing The Calendar
As I noted previously, the com-
mand displaying the calendar is
the most complex to implement.

You should now know how the
simpler commands are imple-
mented, so it is time to see what’s
inside the OnAction event handler
of the Calendar action. It is shown
in Listing 3.

The first step in creating the cal-
endar HTML code is determining
the month and year for which the
calendar is to be displayed. I’ve
written the Weblook application
so that the user can use Next and
Previous links to navigate the
calendar one month at a time.

Because of this browsing capa-
bility, the application must read
the given month and year numbers
from the URL. The request URL is
automatically parsed by Delphi’s
WebBroker architecture so that
the example application can
simply read the Request.Query-
Fields property. If there are errors
in the month or year numbers (or
they don’t exist), the code uses the
current month and year.

Function TWeblookWM.ReadPipeRequestResponse(strRequest : String) : String;
Var
iBW,iBR : Cardinal;
cResponse : Array[0..1023] of Char;

Begin
CreateNamedPipe;
Result := '';
If (Not WriteFile(hPipe,Pointer(strRequest)^, Length(strRequest),iBW,nil)) Then
Raise Exception.Create('Cannot write to pipe: ' +
SysErrorMessage(GetLastError));

If ReadFile(hPipe,cResponse,SizeOf(cResponse)-1,iBR,nil) Then Begin
cResponse[iBR] := #0; { properly terminate the string }
Result := String(cResponse);

End Else Raise Exception.Create('Cannot read from pipe: ' +
SysErrorMessage(GetLastError));

CloseHandle(hPipe);
End;

➤ Listing 2

procedure TWeblookWM.WeblookWMCalendarAction(Sender:
TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

Var
iCol,iRow,iDay : Integer;
strHTML,strRows : String;
wY,wM,wD : Word;

begin
DecodeDate(Date,wY,wM,wD);
Try
iYear := StrToInt(Request.QueryFields.Values['year']);
If (iYear < ciFirstYear) Or (iYear > ciLastYear) Then
iYear := wY;

iMonth := StrToInt(Request.QueryFields.Values['month']);
If (iMonth < 1) Or (iMonth > 12) Then
iMonth := wM;

Except
iYear := wY;
iMonth := wM;

End;
For iCol := 0 to 6 do Begin
For iRow := 1 to 6 do
cgCalendarGrid[iCol,iRow] := ' ';

End;
iCol := DayOfWeek(EncodeDate(iYear,iMonth,1))-1;
iCol := (iCol-ciStartOfWeek) mod 7;
If (iCol < 0) Then
iCol := 7+iCol;

iRow := 1;
For iDay := 1 to
MonthDays[IsLeapYear(iYear),iMonth] do Begin

cgCalendarGrid[iCol,iRow] := IntToStr(iDay) + '
' +
ReadPipeRequestResponse('CALENDAR ' +
IntToStr(Trunc(EncodeDate(iYear,iMonth,iDay))));

Inc(iCol);
If (iCol > 6) Then Begin
iCol := 0;
Inc(iRow);

End;
End;
strHTML := StringReplace(cstrCalendarHTML,'%month%',
LongMonthNames[iMonth]+' '+IntToStr(iYear),[]);

strHTML := StringReplace(strHTML,'%prev%',
GetMonthLinkHTML(iMonth,iYear,-1),[]);

strHTML := StringReplace(strHTML,'%next%',
GetMonthLinkHTML(iMonth,iYear,+1),[]);

strHTML := StringReplace(strHTML,'%current%',
GetMonthLinkHTML(wM,wY,0),[]);

For iRow := 1 to 6 do Begin
strRows := strRows+' <TR>' + CRLF;
For iCol := 0 to 6 do Begin
strRows := strRows+
' <TD WIDTH="102"><FONT SIZE="2" ' +
'FACE="Arial, Helvetica, sans-serif">' +
cgCalendarGrid[iCol,iRow] + '</TD>' + CRLF;

End;
strRows := strRows+' </TR>'+CRLF;

End;
strHTML := StringReplace(strHTML,'%rows%',strRows,[]);
Response.Content := strHTML;

end;

➤ Listing 3

54 The Delphi Magazine Issue 62

After the month and year have
been checked for validity, the code
starts to fill an array variable
named cgCalendarGrid with the cal-
endar entries for the month for
which the calendar is going to be
displayed. The HTML entity
(nbspmeans non-blocking space) is
needed because otherwise the
user’s web browser would render
empty table cells too plain.

Anyway, filling the calendar
requires some arithmetic to make
the calendar appear correctly and
take into account leap years, etc.
The SysUtils unit helps a lot when
filling the calendar. For example,
the MonthDays array can be used to
quickly get the number of days in a
month with a bit of help from the
IsLeapYear function:

iDays := MonthDays[IsLeapYear(
iYear),iMonth];

More Of The Calendar
Because parsing date formats can
be difficult if the regional settings
change, I’ve chosen to use a univer-
sal mechanism to represent a date
when the ISAPI DLL and the helper
application are communicating.
When the DLL must know the cal-
endar entries for a given date, my
code doesn’t send the date a string
literal like 08/10/00, but instead
converts the date to an ordinal
number like 32673.

If you look at the code closely,
you will see the following snippet:

IntToStr(Trunc(EncodeDate(
iYear,iMonth,iDay)))

The EncodeDate function will return
a value of type TDateTime, which is
actually defined as a Double in
SYSTEM.PAS. The TDateTime type
holds a number of days that have
elapsed since 30th of December
1899. By using the Trunc function
the code can get the integral part of
the date, thereby wiping off all
digits on the right side of the
decimal point.

Now let’s get back to the calen-
dar. When the ISAPI DLL sends a
command like CALENDAR 38765 to
the helper application, the applica-
tion will respond with the appoint-
ments on the given date. Then, the
DLL can continue to fill the HTML
table cell with the appropriate
information.

After the calendar table has been
generated, the event handler still
needs to create URLs with which
the user can request to see the pre-
vious, current or the next month in
the calendar. After several calcula-
tions, the helper function
GetMonthLinkHTML will produce an
URL like the following:

/scripts/weblook.dll/
calendar?year=2000&month=7

The Helper Application
You should now have a good
understanding how the ISAPI DLL
works, so it’s time to turn to the
helper application, OutlookHelper.
One of the key functions of this
application is to read the requests
sent by the ISAPI DLL through the
named pipe. This is the function
I’m going to describe next.

If you recall, the API functions
ReadFile and WriteFile operate
generally in synchronous (block-
ing) mode. So, if the helper applica-
tion had called either of these
functions in the main thread, the
whole helper application would
become unresponsive to the user.

To avoid such spiteful behavior,
I’ve written the helper application
so it uses another thread to handle
the pipe communications. This
way the user interface will still stay
operational while the threaded
code will continue to monitor the
pipe normally. The overridden
Execute method of the TThread
class can be seen in Listing 4.

The first thing done by the pipe
thread is to create the server end
of the pipe with the CreateFile API
call. The difference to the similar
call in the ISAPI DLL is that the
helper application doesn’t pass in
the OPEN_EXISTING flag to
CreateFile.

After creating the pipe, the
thread must initialize the COM
architecture with a call to the CoIn-
itialize API function. Although
the main thread has had a chance
to do this, the pipe thread must
nonetheless initialize COM, as the
initialization occurs on a per-
thread basis. To balance the initial-
ization call, a call to CoUninitialize
is needed at the end.

Processing A Pipe Request
If you take a look at the code in List-
ing 4, you will quickly see that

Procedure TPipeServerThread.Execute;
Var
hPipe : THandle;
bConnected : Boolean;
cRequest : Array[0..1024-1] of Char;
iBR,iBW : Cardinal;
strResponse : String;

Begin
hPipe := CreateNamedPipe(strPipeName,Pipe_Access_Duplex,
Pipe_Type_Byte Or Pipe_Wait,1,
4096,4096,nmpWait_Use_Default_Wait,nil);

If (hPipe = Invalid_Handle_Value) Then Begin
strMessage := 'Cannot create pipe: ' +
SysErrorMessage(GetLastError);

Synchronize(LogMessage);
Exit;

End;
CoInitialize(nil);
While (Not Terminated) do Begin
bConnected := ConnectNamedPipe(hPipe,nil);
If ((Not bConnected) And
(GetLastError = Error_Pipe_Connected)) Then
bConnected := True;

If bConnected Then Begin
If (Not ReadFile(hPipe,cRequest,
SizeOf(cRequest),iBR,nil)) Then Begin
strMessage := 'Cannot read from pipe: ' +

SysErrorMessage(GetLastError);
Synchronize(LogMessage);

End Else Begin
cRequest[iBR] := #0;
strMessage := 'Got request "'+cRequest+'"';
Synchronize(LogMessage);
If (cRequest = 'FREE') Then Begin
strMessage := 'Freeing Outlook objects';
Synchronize(LogMessage);
ooOutlook.Free;

End Else Begin
strResponse := ProcessPipeRequest(cRequest);
strMessage := 'Responding "'+strResponse+'"';
Synchronize(LogMessage);
WriteFile(hPipe,Pointer(strResponse)^,
Length(strResponse),iBW,nil);

FlushFileBuffers(hPipe);
End;
DisconnectNamedPipe(hPipe);

End;
End;

End;
CloseHandle(hPipe);
CoUninitialize;
strMessage := 'Pipe thread terminated';
Synchronize(LogMessage);

End;

➤ Listing 4

October 2000 The Delphi Magazine 55

reading and writing to the server
end of the pipe occurs using the
same ReadFile and WriteFile API
calls as in the ISAPI DLL. However,
there are two API calls I’d like to
point out.

After the pipe request has been
processed and the response has
been written to the strResponse
variable, a call to WriteFile writes
data to the pipe. However, because
Windows does internal buffering
on many I/O operations (including
pipes), the code uses a call to the
FlushFileBuffers function. This
makes sure the data actually flows
to the client (the ISAPI DLL).
Finally, the pipe is disconnected
using a call to DisconnectNamedPipe.

A request coming through a pipe
is processed by the ProcessPipe-
Request method (see Listing 5).
This method simply divides the
request into two parts, the ‘verb’
and the parameter. Then, it con-
structs an instance of my
TOutlookObjects class, which
handles all communications with
Outlook itself.

Because some requests, like the
NOTE request, can have two func-
tions based on the parameter
(either a COUNT or a note number
like 2), a simple wrapper function is
used to get the response, as shown
in Listing 6. Here, the variable
ooOutlook is an instance of the
TOutlookObjects class.

Communicating With Outlook
As I noted previously, the
TOutlookObjects class I’ve written
handles all the communications
between Outlook and the helper
application. This class is actually a
wrapper around Delphi’s TOutlook-
Application component, which can
be found from the Servers Compo-
nent Palette tab.

In the constructor of the class,
the code simply creates an
instance of the Outlook compo-
nent, and then attaches itself to
appropriate interfaces that Out-
look supports. Going through the
Outlook object hierarchy is
beyond the scope of this article,
but a good introduction to the
subject can be found from
Microsoft’s website at http://
msdn.microsft.com. For instance,

the article Automating Microsoft
Outlook 97 by Mike Gilbert is a
good one to start with.

Once the appropriate interfaces
have been acquired, the helper
class is ready for action. For exam-
ple, if the user wants to see his/her
notes in Outlook, the ISAPI DLL will
send a request to the helper appli-
cation. The application will eventu-
ally route the call to the helper
class’ GetNoteDetails method,
which will look like the one in
Listing 7.

As you can see, the code simply
uses the Outlook interfaces to
construct an HTML code fragment
that will contain all the necessary
details about the note (or any
other item type in question). Again,
constructing the calendar is more
cumbersome than handling the
other item types.

When processing the calendar,
the helper class will first construct
a calendar cache for the month
that the user wants to see. I wanted
to implement such a cache
because otherwise querying the
calendar would be too slow.
Because Outlook doesn’t sort
appointments in the calendar by
date, it is difficult to quickly find
the appointments on a given date.

By using a cache, the code can
scan through the appointments
only once, and then quickly see the
appointments on any day of the

Function TPipeServerThread.ProcessPipeRequest(strRequest : String) : String;
Var
iPos : Integer;
strVerb : String;
strParam : String;

Begin
iPos := Pos(' ',strRequest);
strVerb := Copy(strRequest,1,iPos-1);
strParam := Copy(strRequest,iPos+1,Length(strRequest)-iPos);
Try
If HelperMainForm.HelperActive.Checked Then Begin
If (ooOutlook = nil) Then ooOutlook := TOutlookObjects.Create;
If (strVerb = 'CALENDAR') Then Result := GetCalendarResponse(strParam)
Else If (strVerb = 'CONTACT') Then Result := GetContactResponse(strParam)
Else If (strVerb = 'TASK') Then Result := GetTaskResponse(strParam)
Else If (strVerb = 'NOTE') Then Result := GetNoteResponse(strParam)
Else If (strVerb = 'INBOX') Then Result := GetInboxResponse(strParam)
Else Result := 'Unknown verb.';

End Else
Result := 'Helper application not active';

Except
On E : Exception do Result := E.Message;

End;

➤ Above: Listing 5 ➤ Below: Listing 6

Function TPipeServerThread.GetNoteResponse(strIndex : String) : String;
Begin
If (strIndex = ‘COUNT’) Then

Result := IntToStr(ooOutlook.GetNoteCount)
Else

Result := ooOutlook.GetNoteDetails(StrToInt(strIndex));
End;

month in question. Anyway,
Weblook will only display a month
at a time, so this kind of simple
caching is sufficient.

Deploying Weblook
As a multi-tiered web application,
there are many steps in deploying
Weblook, although none of the
steps are very complicated in
themselves.

The first step in the deployment
is to find a web server and create a
virtual directory on it. I’d suggest
you create a directory named
Weblook, but you can choose any
name you wish.

After copying the example appli-
cation source code from this
month’s disk, copy the three
HTML files and all the .GIF images
to this virtual directory (make sure
index.html can act as the default
document for this directory). Next,
you need to copy the file
WEBLOOK.DLL (after compiling it
first, if necessary) to the scripts
directory of your web server.

Please note that the DLL is writ-
ten so that it assumes the virtual
directory name for the scripts
directory is actually /scripts,
which is the default in IIS. If you are
using any other web server, you
might either want to create a new
virtual directory with this name, or
alternatively modify the DLL to use
the appropriate directory.

56 The Delphi Magazine Issue 62

Once the DLL has been put into
the correct place, compile and
run the helper application,
OUTLOOKHELPER.EXE. Please note
that this application must run on
the same machine as the web
server and on the same machine as
your Outlook. That is, the web
server, the helper application and
Outlook must all be running on the
same computer. It’s worth pointing
out that this almost certainly
means you won’t be able to use this
approach on an ISP’s web server:
the programs need to be on a
machine in your office, with proper
firewall protection from the rest of
your machines of course!

As a simple piece of software, the
helper application needs just to be
running for it to be active. Outlook,
however, doesn’t need to be run-
ning, as the helper application will
automatically launch it behind the
scenes if necessary.

Testing Weblook
Once you have all the three pieces
(the web server, the DLL and
OutlookHelper) set, it is time to fire
up your web browser. First, try to
access your web server by typing
localhost at the URL field (or the
name of your web server, if it is a
different computer). If you get a
decent reply, try entering
localhost/weblook. This should
display the welcome page of
Weblook.

Now, try to click any of the famil-
iar Outlook icons on the left. If
everything goes smoothly, you
should see, for example, the con-
tents of your Inbox. If you get an
error message saying Cannot open
pipe, you most probably have
forgotten to activate the
OutlookHelper application.

If the helper application is prop-
erly activated, you should see
some text appearing in the log, as
seen in Figure 3. If something goes
wrong in the helper application,
you should see the error messages
appearing in the log. If you wish to
temporarily stop the Outlook-
Helper application from respond-
ing (for security reasons, for
instance), just make sure the
Active checkbox is not selected on
the OutlookHelper main window.

After you have done testing, be
sure to click the Free Objects

➤ Figure 3: The OutlookHelper
application communicating
with Outlook.

Function TOutlookObjects.GetNoteDetails(iNoteNumber : Integer) : String;
Var
niItem : NoteItem;

Begin
niItem := NoteItem(itNotes.Item(iNoteNumber+1));
Result :=
' <TD WIDTH="30%">'+
niItem.Subject+'</TD>'+CRLF+
' <TD WIDTH="70%"><PRE>'+
niItem.Body+'</PRE></TD>'+CRLF;

End;

➤ Listing 7

button on OutlookHelper to stop
the pipe server thread and discon-
nect from Outlook. After this has
been done you can freely shut
down OutlookHelper and your
web server.

Conclusion
Having got this far, I hope you have
a good understanding of how my
example application works. I sug-
gest you copy the example code
from the disk and study it. When it
comes to building distributed web
applications, there’s always some-
thing interesting to learn, at least
for me.

If you wish to improve Weblook,
you might want to allow the user to
view even more folders that Out-
look supports, for example the
Journal, Drafts, and Deleted Items.
And if you’re really anxious, you
might create a version of Weblook
that would allow the user to add
and modify existing items!

Email is always welcome, so if
you want customize Weblook or
discuss the architecture in more
detail, don’t hesitate to contact
me.

Jani Järvinen works as a technical
support person for Borland
products. He specializes in
internet and Windows API
technologies. You can reach him
at janij@dystopia.fi

	The Architecture
	Playing Pipes
	The ISAPI DLL
	An Action Roundtrip
	Requests And Responses
	Constructing The Calendar
	More Of The Calendar
	cal-endar
 entries for a given date, my
 The the main thread has had a chance
	Processing A Pipe Request
	Communicating With Outlook
	Deploying Weblook
	Testing Weblook
	Conclusion

